# Expansion of real numbers by algebraic numbers 

Hajime Kaneko

In this talk we discuss fractional parts of powers of algebraic numbers. Koksma proved that when we take any real $\alpha>1$ then the sequence $\left(\xi \alpha^{n}\right)_{n=0}^{\infty}$ is uniformly distributed modulo 1 for almost all $\xi$. Similarly if $\xi$ is a nonzero real number, the sequence $\left(\xi \alpha^{n}\right)_{n=0}^{\infty}$ is uniformly distributed modulo 1 for almost all $\alpha>1$. On the contrary, it is difficult to determine whether the sequence $\left(\xi \alpha^{n}\right)_{n=0}^{\infty}$ is uniformly distributed modulo 1 for fixed $\xi$ and $\alpha$. Moreover, it isn't generally known that the fractional parts of $\left(\xi \alpha^{n}\right)_{n=0}^{\infty}$ is dense on the torus $\mathbb{R} / \mathbb{Z}$.

When $N$ is a natural number with $N \geq 2$, the fractional parts of $\xi N^{n}$ is determined by the $N$-ary expansion of $\xi$. Mahler introduced the " $3 / 2$-ary" expansion to estimate the values $\xi(3 / 2)^{n}$ modulo 1 . He studied the set of Z-numbers by using this numerical system.

We now introduce the " $\alpha$-ary" expansion of $\xi$, where $\alpha>1$ is an algebraic number whose Galois conjugates have absolute values greater than 1 . We can express the integer parts and fractional parts of $\xi \alpha^{n}$ by this system. When $\alpha$ is not a natural number, digits of " $\alpha$-ary" expansion have some interesting properties. By studying the patterns of digits, we can estimate the fractional parts of $\xi \alpha^{n}$.

